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has also been presented in the same figure for several values of oy.?
It has also been assumed here that the TEy, and TM;; modes are in
phase at a radial distance oy = y, where y is the eigenvalue for the
TMy; mode for a prescribed oy, since given a spherical mode, a
cutoff radius may be approximately defined by kr, = y.

Finally, in order to examine the validity of the analytical pro-
cedure employed to study the transmission characteristics of spheri-
cal TE and TM modes in conical waveguides, measured data on
(8/k) for a cone with o = 6.254° at 10 GHz has been compared
with the computed results in Fig. 7 for the TEy mode. Excellent
agreement between the two justifies the validity of the analysis
presented.

IV. CONCLUSIONS

In conclusion one observes that a detailed study of the transmission
characteristics of spherical TE and TM modes in conical waveguides
is facilitated by accurate computation of eigenvalues. Further, the
digital-computer based iterative procedure proposed for the evalua-
tion of accurate eigenvalues of the spherical waves has been found
to be very fast and highly accurate. Study of transmission charac-
teristics of the spherical TE and TM modes within the guide has
revealed a number of interesting properties. Explicit expressions are
derived for various transmission parameters (attenuation constant,
phase constant, and the wave impedance) associated with the mode
transmission in a conical waveguide. These parameters are dependent
on «a as well as the radial distance kr. A particular mode transmitted
in a conical waveguide has to pass through an attenuation and a
transmission region. The former is confined to the vicinity of the
apex where the induction field predominates. At distances far away
(kr > y) from the apex there is a region of unattenuated transmis-
sion. A study of the phase slip between the spherical TEy; and TMy;
modes transmitted simultaneously in a dual-mode conical waveguide
has also been made. Experimental verification of the computed
results on phase velocity of the spherical modes in conical wave-
guides justifies the validity of the analysis presented.

' ACKNOWLEDGMENT

The authors wish to thank Dr. A. C. Ludwig, Jet Propulsion
Laboratory, California Institute of Technology, California, for
having supplied measured data on the phase velocity in a conical
waveguide. They also wish to thank the Computer Center, IIT-
Madras for having provided the facilities of TBM-370/155 System
for the numerical computations involved in this short paper.

31t may be pointed out that the lower limit of the integral (2) is
taken to be au =y (where ‘‘y”’ is the eigenvalue for the TMiu mode)
since one is primarily interested in the relative phase shift between the
dominant spherical TE and TM modes in a dual mode conical wave-
guide. Further, in a dual-mode concial waveguide, the TMu mode is
%fnera,ted by introducing a discontinuity at a radial distance kri = y.
ence it follows that a: = kr1 = y.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, NOVEMBER 1974

REFERENCES

[1] E. C. Okress, Microwave Power Engineering, vol. 1. New York:
Academic, 1968, pp. 228-240.

[2] P. D. Potter, ‘‘A new horn antenna with suppressed side lobes and
equal beamwidth,” Microwave J., vol. 6 pp. 71-78, June 1963.

[31 R. F. Harrington, Time-Harmonic Eleciromagnetic Fields.
York: McGraw-Hill, 1961, ch. 6. . .

[4] M. S. Narasimhan and B. V. Rao, “Hybrid modes in corrugated
conical horns,’”’ Electron. Lett., vol. 6, pp. 32—34, Jan. 1970. A

{51 M. A, Abramovitz and A. I. Stegun, Hand Book of Mathematical
Functions. New York: Dover, 1965, ch. 9.

[6] W. Magnus and F. Oberhettinger, Formulas_and Theorems for the
Fungtzwnsd %‘7 Mathematical Physics. New York: Chelsea, 1954,
pD. an .

[7]1 J. M. McCormick and M. G. Salvadori, Numerical Methods in Fortran.
Englewood Cliffs: N. J.: Prentice-Hall, 1964, ch. 4.

New

Simple Stabilizing Method for Solid-State Microwave
Oscillators

A. KONDO, T. ISHII, anp K. SHIRAHATA

Abstract—In the microwave solid-state oscillators using bulk
effect and avalanche diodes, high dielectric constant ceramics have
been used as a temperature compensator and excellent temperature
stability is obtained. An X-band avalanche diode oscillator is tested
over a wide temperature range. The frequency drift is improved to
be less than 430 kHz/°C. Additional advantages of this technique
are compact size and low cost.

I. INTRODUCTION

A simple means of reducing the noise and stabilizing the solid-
state microwave oscillator is to use a high-Q cavity stabilizer. A
phase lock technique has also been used by means of an injected
signal and a mechanical compensation method which uses a tuning
rod having a large temperature coefficient of expansion in the cavity.
But these methods are fairly troublesome.

In this short paper, simple stabilizing methods using a ceramic
dielectric are described. A ceramic dielectric which has a negative
temperature coefficient is loaded in parallel with the diode package.
The change of the diode and circuit reactance with temperature can
be compensated by the capacitance change of the dielectric. A tem-
perature coefficient less than 430 kHz/°C is obtained in a low-Q
X-band cavity. These methods have merits of simplicity and low
cost. .

II. TEMPERATURE STABILIZATION WITH A DIELECTRIC

The effect of temperature on the diode reactance is due to the
variation of the carrier velocity and the derivative of the ionization
coefficient. These two parameters decrease with the temperature
increase and it results in the increase of diode inductance. The in-
crease of reactance causes the oscillation frequency to shift lower
when the bias current is held constant. The cavity expansion due to
the temperature rise also invites the same results on frequency
characteristics.

If the change of diode and cavity reactance is trimmed with a
ceramic capacitor having negative temperature coefficient, the
oscillator would maintain the same frequency over the operating
temperature range. Some titanium oxide dielectrics have negative
temperature coefficients of capacitance [1]. Fortunately, its dielec-
tric losses are the same order of alumina ceramics which are used
for the microwave diode’s package. In the following, we consider
the circuit parameters to be represented by lumped constants.
Judging from experimental results this assumption is reasonable at
X band.

The oscillation frequency of an avalanche diode oscillator de-
creases almost rectilinearly with the temperature rise. We consider
such an equivalent circuit as Fig. 1. C, is the capacitance of the
diode package and it changes very little with temperature. L, is the
equivalent inductance of the oscillator circuit. G and G. represent
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Fig. 1. Equivalent circuit of avalanche diode oscillator ha.ving tempera-
ture compensated diode.
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Fig. 2. Relation between Cp/C and fo/Af as a function of temperature

coefficient.

the diode negative conductance and circuit conductance, The oscilla-
tion frequency decreases with the temperature rise and its tempera-
ture coefficient is ay. The oscillation frequency is written as

1
w(l —aT) = 1
wo( oy ) LeCp ( )
s0 that
1 .
= — ). 2
Lo= —5 (1 +2a7) 2)

The equivalent inductance has a temperature coefficient -of 2ay.
When the ceramic capacitor C' having a negative temperature coeffi-
cient, 8, is parallel with the ceramic package, the resonant frequency
is given as
1 (C/Cp) (2 — 2
o= wp 1_~(/p)(011 61) + @l 3)
14+C/C, | 2 1+ C/C,

Selecting C,/C > 1, the condition of stabilization with temperature
is

B = 2a,C,p/C. (4)

Thus the temperature compensation of oscillation can be achieved
and the oscillation frequency is written as

o (1 — C/2C,). (5)

Equation (4) is reduced as

CN = 2000(&f/£,)C; ®)

where f, is in gigahertz, the temperature coefficient of ceramic N is
in parts per million per degree centigrade, the frequency deviation
Af is in megahertz per degree centigrade; and C, Cy, are.in picofarads,
respectively. The relation between C,/C and fo/Af is shown in
Fig. 2 with N as a parameter. It is necessary for temperature com-
pensation to know the capacitance of the ceramic package Cp, the
oscillation frequency f, at a standard temperature, and the frequency
deviation Af with temperature. The temperature coefficient of the
ceramic condenser N and C,/C are determined from f,/Af in Fig. 2,
and then the ceramic capacitance C is determined.

III. EXPERIMENTAL RESULTS

In the experiment of compensatlon with the parallel capac1t0r
the external @ of the oscillator cavity is about 20. A ceramic capaci-
tor! is cut 100 X 300 pm wide and 800 ym in length and both ends
are soldered to the metal electrode of the diode package. The photo-

1 Commercial product’s condenser of Tokyo Denki Kagaku for tem-
perature compensatlon Its nominal value of temperature coefficient is
—-2200 ppm /°C
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graph of these diodés is shown in Flg 3. In the picture the dark line
parts of diode packages are ceramic compensators.

The experimental results of power and frequency are shown in
Fig. 4. When the diode has.no ceramic compensator, the oscillation
frequency is 9.845 GHz at 6°C and the temperature coefficient is
—110 kHz/°C over the temperature range from 42° to +55°C
Whiile thé measured temperature coefficient of the oscillator usmg
the cerainic compensator is less than 430 kHz/°C and the oscilla-
tion frequency is 9.408 GHz at 10°C. The frequency- deviation -is
less than 2 MHz over the temperature range of abeut 60°C. The
frequency meter used hére is model 312 A of EIP Laboratories.and
the reading accuracy is in megahertz units. By changmg the ceramic
compensator to have narrower electrode $pacing and a larger
capacitance, the frequency characteristic' shows over compensatlon
The . temperature coefficient is 180 kHz/°C and the oscillation
frequency is 9:224 GHz at 2°C :

This result shows that we can change the temperature coefficient
of oscillator frequency by selection of the capacitance of a ceraniic
capaeitor and its temperature coefficient. The temperature coefficient
of the ceramic compensator is —2200 ppm/°C-in.nominal value.
Oscillator’s f/4f of the noncompensated one is 86, ), is 0.8 pF, and
C is 0.01 pF at-1 MHz. From Fig. 2, N is about 1900 Judging from
the nominal value of the ceramic capa01tor s temperature coefficient,
this result is fairly reasonable. From the second term in the paren-
theses of (3), the temperature coefficient is to be +20 kHz /°C The
difference from the experlmental valie of +30 kHz/°C is, first,
because the equivalent circuit is not shown precisely -as in Flg 1,
owing to parasitic elements of the diode and, second, because the
package parameter does not act perfectly as the lumped constant at
microwave frequency.

The advantage of this method is to compensate the frequency drift
with temperature by attachmg a tiny ceramic on the diode package.
Capamtance of the ceramic compensator is in the deviation of the
ceramic package’s capacitance and there is httle effect upon the
output power.

Fig. 8. Temperature compensated avalanche diode with parallel
capacitor.
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1V. CONCLUSION

The simple temperature compensated oscillator has been designed
for use with avalanche transit time diodes. A ceramic ecapacitor
which has a negative temperature coefficient is used for a tempera-
ture compensator. Stabilized oscillators are improved considerably
in performance compared with nonstabilized oscillators of the same
cavity.

The frequency drift in the low-Q cavity having parallel ceramic
capacitor with the diode package is less than +30 kHz/°C. These
compensation techniques neéd no additional structures such as a

L'etterq
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stabilized cdvity and a mechanical compensating tuner. Especially,
simplicity, low cost, and compact size are the main advantages of
employing the ceramic loading on the diode package to compensate
for temperature changes. Moreover, since this technique is com-
pletely passive, no power is required and the frequency stability
shows the same results as the mechanical tuning compensation.
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Comiments on “Rectangular Waveguides with Impedance
Walls”

P. R. McISAAC

In the above paper,! Dybal et al. discuss the propagation charac-
teristics of several rectangular waveguidés with' corrugated walls
and analyze them by using impédance boundaries to simulate the
corrugated walls. One of the Waveguldes discussed, called an F
guide, Has longitudinal corrugations in all four Walls The authors
claim that this waveguide will support £ modes but not H modes.
However, this waveguide has an isotropic homogeneous dielectrie
surrounded by a conducting boundary which is longitudinally uni-
form. Therefore, if the boundary is assumed to be a perfect conductor,
this waveguide must support a compléte set of both ¥ and H modes;
the presence of the corrugations cannot change this conclusion.

In their discussion of the E guide in Section II1,* the authors state
that the wall impedances Z; = Z; = 0, Z; £ 0, Z, 2 0 (refer to
their paper for the definitions of these unpedances) may be used to
simulate a rectangular waveguide with longitudinally corrugated
walls. They assert as follows.

“The ordinary E modes satisfy the impedance boundary con-
ditions for this impedance configuration while the H modes do
not.”’
They also assert the following.
“Modal solutions other than E modes have field components
. that are incompatible with the impedance boundary conditions.”
No proof is offered for these assertions.

In fact, these assertions are not correct. Consider the following set
of electromagnetic field components in the region: —W/2 < z <
W/2, —H/2 <y < H/2 (for convenience, the origin of the coordi-
nate system is shifted to the center of the waveguide, see Fig. 11).
The notation is essentially that used in the original paper.!

E, = = + k2 ——— K, Hysin (K,z) cos (Kyy) exp (—T'z)
E, = I" + = ——— K,H, cos (K,z) sin (K,,y) exp (—TIz)
E,=0
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H, = - + FrgyT ———— K.H, cos (K,z) sin (K,y) exp (—~T%z)

H, = - + FraE ———— K, Hysin (K,z) cos (Kyy) exp (—~ Tz)
H, = Hysin (K,z) sin (Kyy) exp (—Tz).
Tt is easily verified that these field components satisfy all of Maxwell’s
equations if
r+k— K2~ K2 =0.
In addition, this set of field components is compatible with the
impedance conditions at the walls stated by the authors. Assuming

that the nonzero wall ilnpedances are reactive, so that Z; = jX; and
Z, = jX., the boundary conditions at the walls are

—E,(z,H/2)
X = e = H/2
= T G H ) 2) ty =H/
. E,(W/2y)
X, = L7159 tx=W/2
e XU e =W/

with analogous expressions at the other walls.
Inserting the field components given above into these boundary
conditions, one obtains

T2+ k2 kH X
(KyH/2) cot (K,H/2) = Ry Zo
T+ REWX X,
(KW /2) cot (K. W/2) = ) Zo
This pair of equations, together with
T2+ K — —K2=0

are sufficient to determine the k versus T relationship for given vaues
Of H, W, X1, and X4.

There are an infinite set of solutions to the pair of transcendental
equations just given. In addition to these solutions, there are three
other infinite sets of solutions that can be obtained, based on

H, = Hysin (Kx) cos (Kyy) exp (—Tz)
H, = H, cos (Kpx) sin (Kyy) exp (—Tz)
H, = Hycos (K,x) cos (Kyy) exp ( —T%2)

respectively. ‘Therefore, contrary to the assertion made in the paper,!
the impedance wall model used there has an infinite set of H modes.



