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Fig. 7. Comparison of calculated and measured values for @/k for the
TEu mode.

has also been presented in thesame figure for several values of a0.3
It has also been assumed here that the TEII and TMII modes are in
phase at aradial distanceal = y, where yistheeigenvalue for the
TMII mode for a prescribed aO, since given a spherical mode, a

cutoff radius maybe approximately defined bykrc fi y.

Finally, in order to examine the validity of the analytical pro-
cedureemployed to study the transmission characteristics of spheri-
cal TE and TM modes in conical waveguides, measured data on

(6/k) for aconewithaO =6.254” at 10 GHzhss been compared
with the computed results in Fig. 7 for the TEII mode. Excellent
agreement between the two justifies the validity of the analysis

presented.

IV. CONCLUSIONS

In conclusion one observes that a detailed study of the transmission
characteristics of spherical TE and TM modesin conical waveguides
is facilitated by accurate computation of eigenvalues. Further, the
digital-computer based iterative procedure proposed for the evalua-

tion of accurate eigenvalues of the spherical waves has been found
to be very fast and highly accurate. Study of transmission charac-

teristics of the spherical TE and TM modes within the guide has

revealed a number of interesting properties. Explicit expressions are
derived for various transmission parameters (attenuation constant,
phase constant, andthewave impedance) associated with the mode

transmission in a conical waveguide. These parameters are dependent
ona~ sswellas theradial distancekr. Aparticular mode transmitted
in a conical waveguide has to pass through an attenuation and a
transmission region. The former is confined to the vicinity of the
apex where the induction field predominates. At distances far away
(kr ~y) from theapex there isa region of unattenuated transmit-

sion. Astudyof the phase slip between the spherical TE1l and Ti%
modes transmitted simultaneously in a dual-mode conical waveguide
has afeo been made. Experimental verification of the computed

results on phase velocity of the spherical modes in conical wave-

guides justifies the validity of the analysis presented.
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~ It may be pointed out that the lower limit of the integral (2) is
taken to be m = v (where “v” is theeigenvalue fa
since one is primarily interested i]
dominant spherical TE
mid
?&::!ed by introducing a discontinuity at ; radial distan& .kn “= U.

e It follows that m = krl = g.

w the TLMI~ mode)
n the relative phase shift between the

and TM modes in a dual mode conical wavf+
Le. Further, in a dual-mode concial wavemdde. the TM,, mode is
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Simple Stabilizing Method for Solid-State Microwave

Oscillators

A. KONDO, T. ISHII, AND K. SHIRAHATA

Absfracf—In the microwave solid-state oscillators using bulk

effect and avalanche diodes, high dielectric constant ceramics have
been used as a temperature compensator and excellent temperature
stability is obtained. An X-band avalanche diode oscillator is tested
over a wide temperature range. The frequency drift is improved to
be less than +3o kHzflC. Additional advantages of this technique

are compact size and low cost.

I. INTRODUCTION

A simple means of reducing the noise and stabilizing the solid-

state microwave oscillator is to use a high-Q cavity stabilizer. A
phase lock technique has also been used by means of an injected
signal and a mechanical compensation method which uses a tuning
rod having a large temperature coefficient of expansion in the cavity.
But these methods are fairly troublesome.

In this short paper, simple stabilizing methods using a ceramic
dielectric are described. A ceramic dielectric which has a negative
temperature coefficient is loaded in parallel with the diode package.
The change of the diode and circuit reactance with temperature can

be compensated by the capacitance change of the dielectric. A tem-

perature coefficient less than +30 kHz~C is obtained in a 1ow-Q

X-band cavity. These methods have merits of simplicity and low

cost.

II. TEMPERATURE STABILIZATION WITH A DIELECTRIC

The effect of temperature on the diode reactance is due to the

variation of the carrier velocity and the derivative of the ionization
coefficient. These two parameters decrease with the temperature
increase and it results in the increase of diode inductance. The in-
crease of reactance causes the oscillation frequency to shtit lower
when the bias current is held constant. The cavity expansion due to

the temperature rise also invites the same results on frequency
characteristics.

If the change of diode and cavity reactance is trimmed with a

ceramic capacitor having negative temperature coefficient, the
oscillator would maintain the same frequency over the operating
temperature range. Some titanium oxide dielectrics have negative
temperature coefficients of capacitance [1]. Fortunately, its diele~
tric losses are the same order of alumina ceramics which are used
for the microwave diode’s package. In the following, we consider

the circuit parameters to be represented by hnnped constants.
Judging from experimental results this assumption is reasonable at
X band.

The oscillation frequency of an avalanche diode oscillator de-

creases ahnost rectilinearly with the temperature rise. We consider
such an equivalent circuit as Fig. 1. C= is the capacitance of the
diode package and it changw very little with temperature. L, is the

equivalent inductance of the oscillator circuit. G and G, represent
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Fig. 1. Equivalent circuit of avalanche diode oscillator having tempera-
ture compensated diode.
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Fig. 2. Relation between Cc\C and .fo/Af as a function of temperature
coefficient.

the diode negative conductance and circuit conductance. The oscilla-

tion frequency decreases with the temperature rise and its tempera-

ture coefficient is W. The oscillation frequency is written as

so that

1
(O.(l — all”) = —

L.C,

L. = +, (1+ 2.,7’).

(1)

(2)

Tlie equivalent inductance has a temperature coefficient of 2w.

When the ceramic capacitor C having a negative temperature coeffi-

cient PI is parallel with the ceramic package, the resonant frequency
is given 2s

~o

{

1 (c/cp) (2a1 – 61) + 2CY1~
1–5

“=l+c/cp 1 + c/cp 1

(3)

Selecting Cp/C >>1, the condition of stabilization with temperature

is

& = 2a1cp/c. (4)

Thus the temperature compensation of oscillation can be achieved
and the oscillation frequent y is written as

0 = O(I(1 — c/2c=). (5)

Equation (4) is reduced as

CN = 2000 (if/f, )C, (6)

where j~ is in gigahertz, the temperature coefficient of ceramic N is

in parts per million per degree centigrade, the frequency deviation

Aj is in megahertz per degree centigrade, and C, CP are in piqofarads,
respectively. The relation between Cg/C and .f,j/A.f is shown in

Fig. 2 with N as a parameter: It is necessary for temperature com-
pensation to know the capacitance of the ceramic package C., the
oscillation frequency .fo at a standard temperature, and the frequency
deviation Af with temperature. The temperature coefficient of the
ceramic condenser N and CP/C are determined from .fo/Aj” in Fig. 2,
and then the ceramic capacitance C is determined.

III. EXPERIMENTAL RESULTS

In the experiment of compensation with the parallel capacitor,

the external Q of the oscillator cavity is about 20. A ceramic capaci-

tor’ is cut 100 X 300 pm wide and 800 Ym in length and both ends
are soldered to the metal electrode of the diode package. The photo-

1 Commercial product’s condenser of Tokyo Denki Kagalw for t em-
perature compensation. Its nominal value of temperature coefficient is
-2200 ppm ~C.
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graph of these diod6s is shown in Fig. 3. In the picture the dark line

parts of diode packages are ceramic compensators.

The experhnental results of power and frequency are shown in

Fig. 4. When the diode has no ceramic compensator, the oscillation

frequency is 9.845 GHz at 6°C and the temperature coefficient is

– 110 kHzflC over the temperature range from 42” to +55”C.

While the measured temperature coefficient of the oscillator using
the ceramic compensator is less than +30 kHz/”C and the oscilla-
tion frequency is 9.408 GHz at 10”C. The frequency deviation is
less than 2 MHz over the temperature range of about 60”C. The
frequency meter used here is model 312A of EIP Laboratories and

the reading accuracy is in megahertz units. By changing the ceramic
compensator to have narrower electrode. spacing and a largei-

capacitance, the frequency characteristic shows over compensation.
The temperature coefficient is +180 kHzflC and the oscillation
frequency is 9.224 GHz at, 2°C

This result shows that we can change the temperature coefficient

of mcillator frequency by selection of the capacitance of a ceramic
capacitor and its temperature coefficient. The temperature coefficient
of the ceramic compensator is –2200 ppm~C in nominal value.
Oscillator’s j/ ‘j of the noncompensated one is 86, Cp is 0.8 pF, and

tC is 0.01 pF a 1 MHz. From Fig. 2, N is about 1900. Judging from

the nomi~al value of the ceramic capacitor’s temperature coefficient,
this result is fairly reasonable. From the second term @ the paren-
theses of (3), the temperature coefficient is to be +20 kEfz~C. ,The
difference from the experimental value of +3o kHz/”C is, first,

because the equivalent circuit is not shown precisely as in Fi&. I,

owing to parasitic elements of the diode and, second, because the

package parameter does not act perfectly as the lumped constant at

microwave frequency.
The advantage of this method is to compensate the frequency drift

with temperature by attaching a tiny ceramic on the diode package.
Capacitance of the ceramic compensator is in the deviation of the

ceramic package’s capacitance and there is little effect upon the
output power.

Fig. 3. Temperature compensated avalanche diode with parallel
capacitor.
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Fig. 4. Measured temperature characteristics of avalanche diode
oscillator using temperature compensated diode.
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IV. CONCLUSION stabilized cavity and a mechanical compensating tuner. fispecially,

The simple temperature compensated oscillator h% been designed
simplicity, low cost, and compact size are the main advantages of

for use with avalanche, transit time diodes. A ceramic capacitor
employing the ceramic loading on the diode package to compensate
for temperature changes. Moreover, since this technique is com-

which has a negative temperature coefficient is used for a tempera-

ture compensator. Stabilized oscillators are improved considerably
pletely passive, no power is required and the frequency stability

shows the same results as the mechanical tuning compensation.
in performance compared with nonstabilized oscillators of the same

cavity.
The frequency drift in the 1ow-Q cavity having parallel ceramic
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Letters

Cornmentson “Rectangular Waveguides with Impedance

Walls”

P. R. McISAAC

In the above paper,l Dybalet al. discuss the propagation charac-
teristics of several rectangular waveguides witlr corrugated walls
and analyze them by using impedance boundaries to simulate the
corrugated walls. One of the waveguides discussed, called an E
guide, has longitudinal corrugations in all four walIs. The authors
claim that this waveguide will support E modes but not H modes.
However, this waveguide hzis an isotropic homogeneous dielectric

surrounded by a conducting boundary which is longitudinally ~mi-
form. Therefore, if the boundary is assumed to be a perfect conductor,

this waveguide must support a complete set of both E and H modes;

the presence of the corrugations cannot change thk conclusion.
In their discussion of the E guide in Section 111)’ the authors state

that the wall impedances Z1 = ZS = O, ZI # 0, Z~ #O (refer to

their paper forthe definitions of these impedances) may be used to
simulate a rectangular waveguide with longitudinally corrugated

walls. They assert as follows.
“The ordinary E modes satisfy the iuipedance boundary con-
ditions for this impedance configuration whllethe Hmodesdo
not?’

They also assert the following.

“Modal solutions other than E modes have field components

that are incompatible with the, impedance boundary conditions.”
No proof is offered for these assertions.

In fact, these assertions are not correct. Consider the following set

of electromagnetic field components in the region: — W/2 < z <
W/2, –H/2 < y < H/2 (for convenience, the origin of the coordi-
nate system is shifted to the center of the waveguide, see Fig. 11).
The notation is essentially that used in the original paper.1

E. = ~ K,HO sin (K.x) cos (Kuy) exp ( – rz)
r2 + kz

Eu=~ KZHO cos (K=x) sin (Kvy) exp ( – rz )
p + ~2

E.=0

Manuscript received November 16, 1973.
The author is with the Department of Electrical Engineering, Cornell

University, Itham, N. Y. 14S50.
1 R. R. Dybal, L. Peters, Jr., and W. H. Peake, IEEE Trans. .Micro-

wave Theory Tech., vol. MTT-19, pp. 2-9, Jan 1971.

H.== K.H, cos (K.x) sin (Kvy) exp (– rz)
rz + ~z

H, = ~ K8H, sin (K=z) eos (Kvy) exp (– ~z)
r2 + ~z

H. = H, sin (K.x) sin (kvy) exp ( – rz).

It is easily verified that these field components satisf y all of Maxwell’s
equations if

r2+&2 –&2-&2=0.

In addition, this set of field components is compatible with the

impedance conditions .at the walls stated by the authors. Assuming
that the nonzero wall ~pedances are reactwe, so that 21 = .jX, and
Z, = jX,, the boundary ~onditions at the walk are

–E. (z, H/2 )
jX1 =

He (z, H/2 ) ‘
at y = H/2

Ev (W/2,y)
jX4 =

H.(W)2,y) ‘
at x = W/2

withanalogous expressions at the other walls.
Inserting the field components given above into these

conditions, one obtains

rz + kz kli xl
(K.H/2) cot (KuH/2 ) = ~ — —

2 20

rj + w kw X4
(K.W/2) cot (K.W/2) = ~ — — .

2 Zo

This pair of equations, together with

r2+~2_&2 _&2=0

“—

boundary

are sufficient to determine the k versus r relationship for given vaues
of H, W, Xl, and X4.

There are an infinite set of solutions to the pair of transcendental

equations just given. In addition to these solutioris, there are three
other infinite sets of solutions that can be obtained, based on

H. = H, sin (K.z) cos (Kvy) exp (– m)

Hz = HO cos (K.z) sin (Kvy) exp ( – rz)

H. = HO cos (K.z) cos (K.y) exp ( – rz )

r&spectively. Therefore, contrary to the assertion made in the paper,l

the impedance wall model used there has an infinite set of H modes.


